Name:	
Student ID:	
Section:	
T , , ,	
Instructor:	

Math 113 (Calculus 2) Exam 2 9-13 October 2009

Instructions:

- 1. Work on scratch paper will not be graded.
- 2. Should you have need for more space than is allotted to answer a question, use the back of the page the problem is on and indicate this fact.
- 3. Simplify your answers. Expressions such as $\ln(1)$, e^0 , $\sin(\pi/2)$, $\tan^{-1}(1)$, etc. must be simplified for full credit.
- 4. Calculators are not allowed.

For Instructor use only.

#	Possible	Earned	#	Possible	Earned
M.C.	36		12	8	
10 a-c	12		13	8	
10 d-f	12		14	8	
11	8		15	8	
Sub	68		Sub	32	
			Total	100	

Answers to MC: 1C 2C 3D 4A 5B 6B 7D 8C 9E

Multiple Choice (36 points). Fill in the answer to each problem on your scantron. Make sure your name, section and instructor is on your scantron.

1.
$$\int_0^1 t e^{-t} dt =$$
 A. 1 B. $1 - \frac{1}{e}$ C. $1 - \frac{2}{e}$ D. $1 + \frac{1}{e}$ E. $1 + \frac{2}{e}$

2.
$$\int_0^{\pi/2} \sin^3 x \cos^2 x \, dx =$$
A. 0 B. $\frac{1}{15}$ C. $\frac{2}{15}$ D. $\frac{1}{5}$ E. $\frac{4}{15}$

3.
$$\int_0^{\pi} \cos^2 x \, dx =$$
A. $\frac{\pi}{5}$ B. $\frac{\pi}{4}$ C. $\frac{\pi}{3}$ D. $\frac{\pi}{2}$ E. π

4.
$$\int \frac{dx}{x^2 \sqrt{x^2 + 4}}$$
 A.
$$-\frac{\sqrt{x^2 + 4}}{4x} + C$$
 B.
$$-\frac{\sqrt{x^2 + 4}}{x} + C$$
 C.
$$\frac{\sqrt{x^2 + 4}}{4x} + C$$
 D.
$$\frac{\sqrt{x^2 + 4}}{x} + C$$

5.
$$\int_{-1}^{0} \frac{dx}{x^2 + 2x + 2} =$$
A. $\frac{\pi}{5}$ B. $\frac{\pi}{4}$ C. $\frac{\pi}{3}$ D. $\frac{\pi}{2}$ E. π

6.
$$\int_{1}^{2} \frac{dx}{(x+1)(x+2)} =$$
A. $\ln \frac{10}{9}$ B. $\ln \frac{9}{8}$ C. $\ln \frac{8}{7}$ D. $\ln \frac{7}{6}$ E. $\ln \frac{6}{5}$ F. $\ln \frac{5}{4}$ G. $\ln \frac{4}{3}$

7.
$$\int_0^\infty \frac{dx}{1+x^2} =$$

A. $\frac{\pi}{5}$ B. $\frac{\pi}{4}$ C. $\frac{\pi}{3}$ D. $\frac{\pi}{2}$ E. π

8. What is the integral definition of $\ln x$?

A.
$$\int_0^x \frac{1}{t} dt \text{ for } x > 0$$

B.
$$\int_1^x \frac{1}{t} dt$$
 for $x > 1$ C. $\int_1^x \frac{1}{t} dt$ for $x > 0$

C.
$$\int_1^x \frac{1}{t} dt$$
 for $x > 0$

D.
$$\int_0^x \frac{1}{t} dt$$
 for all real numbers x E. $\int_1^x \frac{1}{t^2} dt$ for $x > 0$ F. $\int_1^e \frac{1}{t} dt$ for $x > 0$

E.
$$\int_{1}^{x} \frac{1}{t^2} dt \text{ for } x > 0$$

F.
$$\int_1^e \frac{1}{t} dt$$
 for $x > 0$

9.
$$\int \sec^3 x \, dx =$$

A.
$$\frac{1}{2} \sec x \tan x + C$$

B.
$$\frac{1}{2} \ln |\sec x + \tan x| + C$$

A.
$$\frac{1}{2} \sec x \tan x + C$$
 B. $\frac{1}{2} \ln|\sec x + \tan x| + C$ C. $\frac{1}{2} (\sec x + \ln|\sec x|) + C$

D.
$$\frac{1}{2}(\csc x \cot x + \ln|\csc x - \cot x|) + C$$

D.
$$\frac{1}{2}(\csc x \cot x + \ln|\csc x - \cot x|) + C$$
 E. $\frac{1}{2}(\sec x \tan x + \ln|\sec x + \tan x|) + C$

Short Answer. Fill in the blank with the appropriate answer. 4 points each. A correct answer gets full credit. You will need to show your work for partial credit.

10. (24 points)

(a) Use the integral definition of $\ln 2$ and the midpoint rule with n=2 to approximate $\ln 2$.

(b) If f'(x) < 0 and f''(x) > 0 for $a \le x \le b$, Order L_n, R_n, M_n and T_n where L_n is the left endpoint approximation, R_n is the right endpoint approximation, M_n is the midpoint rule, and T_n is the trapezoidal rule each using n subdivisions.

(c) If $\sin \theta = x$, find $\sin 2\theta$ in terms of x.

(d) Evaluate $\int \frac{x^3 + x + 1}{x^2 + 1} dx$

(e) Circle the integrals that converge and put an X over the integrals that diverge.

A.
$$\int_{1}^{\infty} \frac{dx}{x^2}$$

B.
$$\int_0^1 \frac{dx}{x^2}$$

C.
$$\int_{1}^{\infty} \frac{3 + \sin 2x}{x} dx$$

A.
$$\int_{1}^{\infty} \frac{dx}{x^2}$$
 B.
$$\int_{0}^{1} \frac{dx}{x^2}$$
 C.
$$\int_{1}^{\infty} \frac{3 + \sin 2x}{x} dx$$
 D.
$$\int_{0}^{1} \frac{3 + \sin 2x}{\sqrt{x}} dx$$

(f) A table for the function f is given. Use the table and Simpson's Rule with n=4to estimate $\int_0^2 f(x) dx$.

		-			
		0.5			
f(x)	2.5	2.8	3.0	3.2	3.5

Show your work for problems 11-15. Each problem is worth 8 points.

11. Evaluate the integral $\int_{-1}^{3} \sqrt{3+2t-t^2} dt$.

12. Evaluate the integral $\int \sqrt{\frac{1+x}{1-x}} dx$

13. Use the Comparison Theorem to determine whether the integral is convergent or divergent. $\int_0^\infty \frac{x^2}{x^5+7} dx$. Justify your reasoning.

14. Evaluate the integral $\int \sin 8x \sin 5x \, dx$.

15. Evaluate the integral $\int \frac{\sqrt{x^2 - 9}}{x^4} dx$.